Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Infect Dis ; 76(9): 1539-1549, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-20242038

ABSTRACT

BACKGROUND: Prior observation has shown differences in COVID-19 hospitalization risk between SARS-CoV-2 variants, but limited information describes hospitalization outcomes. METHODS: Inpatients with COVID-19 at 5 hospitals in the eastern United States were included if they had hypoxia, tachypnea, tachycardia, or fever, and SARS-CoV-2 variant data, determined from whole-genome sequencing or local surveillance inference. Analyses were stratified by history of SARS-CoV-2 vaccination or infection. The average effect of SARS-CoV-2 variant on 28-day risk of severe disease, defined by advanced respiratory support needs, or death was evaluated using models weighted on propensity scores derived from baseline clinical features. RESULTS: Severe disease or death within 28 days occurred for 977 (29%) of 3369 unvaccinated patients and 269 (22%) of 1230 patients with history of vaccination or prior SARS-CoV-2 infection. Among unvaccinated patients, the relative risk of severe disease or death for Delta variant compared with ancestral lineages was 1.30 (95% confidence interval [CI]: 1.11-1.49). Compared with Delta, the risk for Omicron patients was .72 (95% CI: .59-.88) and compared with ancestral lineages was .94 (.78-1.1). Among Omicron and Delta infections, patients with history of vaccination or prior SARS-CoV-2 infection had half the risk of severe disease or death (adjusted hazard ratio: .40; 95% CI: .30-.54), but no significant outcome difference by variant. CONCLUSIONS: Although risk of severe disease or death for unvaccinated inpatients with Omicron was lower than with Delta, it was similar to ancestral lineages. Severe outcomes were less common in vaccinated inpatients, with no difference between Delta and Omicron infections.


Subject(s)
COVID-19 , Inpatients , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19 Vaccines
2.
Infect Control Hosp Epidemiol ; : 1-10, 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-2326375

ABSTRACT

SARS-CoV-2 transmissions among healthcare personnel (HCP) and hospitalized patients are challenging to confirm. Investigation of infected persons often reveals multiple potential risk factors for viral acquisition. We combined exposure investigation with genomic analysis confirming two hospital-based clusters. Prolonged close contact with unmasked, unrecognized infectious, individuals was a common risk.

3.
Clin Infect Dis ; 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2272936

ABSTRACT

BACKGROUND: The variant of concern, Omicron, has become the sole circulating SARS-CoV-2 variant for the past several months. Omicron subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 evolved over the time, with BA.1 causing the largest wave of infections globally in December 2021- January 2022. In this study, we compare the clinical outcomes in patients infected with different Omicron subvariants and compare the relative viral loads, and recovery of infectious virus from upper respiratory specimens. METHODS: SARS-CoV-2 positive remnant clinical specimens, diagnosed at the Johns Hopkins Microbiology Laboratory between December 2021 and July 2022, were used for whole genome sequencing. The clinical outcomes of infections with Omicron subvariants were compared to infections with BA.1. Cycle threshold values (Ct) and the recovery of infectious virus on VeroTMPRSS2 cell line from clinical specimens were compared. RESULTS: The BA.1 was associated with the largest increase in SARS-CoV-2 positivity rate and COVID-19 related hospitalizations at the Johns Hopkins system. After a peak in January, cases fell in the spring, but the emergence of BA.2.12.1 followed by BA.5 in May 2022 led to an increase in case positivity and admissions. BA.1 infections had a lower mean Ct when compared to other Omicron subvariants. BA.5 samples had a greater likelihood of having infectious virus at Ct values less than 20. CONCLUSIONS: Omicron subvariants continue to be associated with a relatively high rate of PCR positivity and hospital admissions. The BA.5 infections are more while BA.2 infections are less likely to have infectious virus, suggesting potential differences in infectibility during the Omicron waves.

4.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: covidwho-2020639

ABSTRACT

BACKGROUNDIncreased SARS-CoV-2 reinfection rates have been reported recently, with some locations basing reinfection on a second positive PCR test at least 90 days after initial infection. In this study, we used Johns Hopkins SARS-CoV-2 genomic surveillance data to evaluate the frequency of sequencing-validated, confirmed, and inferred reinfections between March 2020 and July 2022.METHODSPatients who had 2 or more positive SARS-CoV-2 tests in our system, with samples sequenced as a part of our surveillance efforts, were identified as the cohort for our study. SARS-CoV-2 genomes of patients' initial and later samples were compared.RESULTSA total of 755 patients (920 samples) had a positive test at least 90 days after the initial test, with a median time between tests of 377 days. Sequencing was attempted on 231 samples and was successful in 127. Rates of successful sequencing spiked during the Omicron surge; there was a higher median number of days from initial infection in these cases compared with those with failed sequences. A total of 122 (98%) patients showed evidence of reinfection; 45 of these patients had sequence-validated reinfection and 77 had inferred reinfections (later sequencing showed a clade that was not circulating when the patient was initially infected). Of the 45 patients with sequence-validated reinfections, 43 (96%) had reinfections that were caused by the Omicron variant, 41 (91%) were symptomatic, 32 (71%) were vaccinated prior to the second infection, 6 (13%) were immunosuppressed, and only 2 (4%) were hospitalized.CONCLUSIONSequence-validated reinfections increased with the Omicron surge but were generally associated with mild infections.FUNDINGFunding was provided by the Johns Hopkins Center of Excellence in Influenza Research and Surveillance (HHSN272201400007C), CDC (75D30121C11061), Johns Hopkins University President's Fund Research Response, Johns Hopkins Department of Pathology, and the Maryland Department of Health.


Subject(s)
COVID-19 , Reinfection , Humans , SARS-CoV-2/genetics , Genome, Viral
5.
Open Forum Infect Dis ; 9(6): ofac064, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1948416

ABSTRACT

Profoundly B-cell-depleted patients can have prolonged severe acute respiratory syndrome coronavirus 2 infections with evidence of active viral replication, due to inability to mount an adequate humoral response to clear the virus. We present 3 B-cell-depleted patients with prolonged coronavirus disease 2019 infection who were successfully treated with a combination of casirivimab/imdevimab and remdesivir.

6.
Front Cell Infect Microbiol ; 12: 809407, 2022.
Article in English | MEDLINE | ID: covidwho-1817934

ABSTRACT

Large-scale SARS-CoV-2 molecular testing coupled with whole genome sequencing in the diagnostic laboratories is instrumental for real-time genomic surveillance. The extensive genomic, laboratory, and clinical data provide a valuable resource for understanding cases of reinfection versus prolonged RNA shedding and protracted infections. In this study, data from a total of 22,292 clinical specimens, positive by SARS-CoV-2 molecular diagnosis at Johns Hopkins clinical virology laboratory between March 11th 2020 to September 23rd 2021, were used to identify patients with two or more positive results. A total of 3,650 samples collected from 1,529 patients who had between 2 and 20 positive results were identified in a time frame that extended up to 403 days from the first positive. Cycle threshold values (Ct) were available for 1,622 samples, the median of which was over 30 by 11 days after the first positive. Extended recovery of infectious virus on cell culture was notable for up to 70 days after the first positive in immunocompromised patients. Whole genome sequencing data generated as a part of our SARS-CoV-2 genomic surveillance was available for 1,027 samples from patients that had multiple positive tests. Positive samples collected more than 10 days after initial positive with high quality sequences (coverage >90% and mean depth >100), were more likely to be from unvaccinated, or immunosuppressed patients. Reinfections with viral variants of concern were found in 3 patients more than 130 days from prior infections with a different viral clade. In 75 patients that had 2 or more high quality sequences, the acquisition of more substitutions or deletions was associated with lack of vaccination and longer time between the recovered viruses. Our study highlights the value of integrating genomic, laboratory, and clinical data for understanding the biology of SARS-CoV-2 as well as for setting a precedent for future epidemics and pandemics.


Subject(s)
COVID-19 , Reinfection , COVID-19/diagnosis , Genome, Viral/genetics , Genomics , Humans , Molecular Diagnostic Techniques , RNA, Viral/genetics , SARS-CoV-2/genetics
7.
EBioMedicine ; 79: 104008, 2022 May.
Article in English | MEDLINE | ID: covidwho-1796982

ABSTRACT

BACKGROUND: The increase in SARS-CoV-2 infections in December 2021 was driven primarily by the Omicron variant, which largely displaced the Delta over a three-week span. Outcomes from infection with Omicron remain uncertain. We evaluated whether clinical outcomes and viral loads differed between Delta and Omicron infections during the period when both variants were co-circulating. METHODS: In this retrospective observational cohort study, remnant clinical specimens, positive for SARS-CoV-2 after standard of care testing at the Johns Hopkins Microbiology Laboratory, between the last week of November and the end of December 2021, were used for whole viral genome sequencing. Cycle threshold values (Ct) for viral RNA, the presence of infectious virus, and levels of respiratory IgG were measured, and clinical outcomes were obtained. Differences in each measure were compared between variants stratified by vaccination status. FINDINGS: The Omicron variant displaced Delta during the study period and constituted 95% of the circulating lineages by the end of December 2021. Patients with Omicron infections (N = 1,119) were more likely to be vaccinated compared to patients with Delta (N = 908), but were less likely to be admitted (0.33 CI 0.21-0.52), require ICU level care (0.38 CI 0.17-0.87), or succumb to infection (0.26 CI 0.06-1.02) regardless of vaccination status. There was no statistically significant difference in Ct values based on the lineage regardless of the vaccination status. Recovery of infectious virus in cell culture was reduced in boosted patients compared to fully vaccinated without a booster and unvaccinated when infected with the Delta lineage. However, in patients with Omicron infections, recovery of infectious virus was not affected by vaccination. INTERPRETATION: Compared to Delta, Omicron was more likely to cause breakthrough infections of vaccinated individuals, yet admissions were less frequent. Admitted patients might develop severe disease comparable to Delta. Efforts for reducing Omicron transmission are required as, though the admission risk might be lower, the increased numbers of infections cause large numbers of hospitalizations. FUNDING: NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061, and The Modeling Infectious Diseases in Healthcare Network (MInD) under awards U01CK000589.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Hospitalization , Hospitals , Humans , Retrospective Studies , SARS-CoV-2/genetics , Viral Load
8.
J Clin Virol ; 150-151: 105151, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773460

ABSTRACT

INTRODUCTION: COVID-19 large scale immunization in the US has been associated with breakthrough positive molecular testing. In this study, we investigated whether a positive test is associated with a high anti-viral IgG, specific viral variant, recovery of infectious virus, or symptomatic infection during an early phase after vaccination rollout. METHODS: We identified 133 SARS-CoV-2 positive patients who had received two doses of either Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) vaccines, the 2nd of which was received between January and April of 2021. The positive samples were collected between January and May of 2021. Samples were sequenced to characterize the whole genome and Spike protein changes and cycle thresholds that reflect viral loads were determined using a single molecular assay. Respiratory SARS-CoV-2 IgG antibodies were examined using ELISA and specimens were grown on cell culture to assess the recovery of infectious virus as compared to a control unvaccinated cohort. RESULTS: Of 133 specimens, 24 failed sequencing and yielded a negative or very low viral load on the repeat PCR. Of 109 specimens that were used for further genome analysis, 68 (62.4%) were from symptomatic infections, 11 (10.1%) were admitted for COVID-19, and 2 (1.8%) required ICU admission with no associated mortality. The predominant virus variant was the Alpha (B.1.1.7), however a significant association between lineage B.1.526 and amino acid change S: E484K with positives after vaccination was noted. A significant reduction of the recovery of infectious virus on cell culture was accompanied by an increase in localized IgG levels in respiratory samples of vaccinated individuals. CONCLUSIONS: Vaccination reduces the recovery of infectious virus in breakthrough infections caused primarily by the Alpha variant accompanied by an increase in upper respiratory tract IgG levels.


Subject(s)
COVID-19 , Antibodies, Viral , Antiviral Agents , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , RNA, Messenger , Respiratory System , SARS-CoV-2 , Vaccination
9.
Clin Infect Dis ; 74(11): 2053-2056, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1706795

ABSTRACT

Among 9048 people infected with SARS-CoV-2 between January and May 2021 in Maryland, in regression-adjusted analysis, SARS-CoV-2 viruses carrying the spike protein mutation E484K were disproportionately prevalent among persons infected after full vaccination against COVID-19 compared with infected persons who were not fully vaccinated (aOR, 1.96; 95% CI: 1.36-2.83).


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Humans , Maryland/epidemiology , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Clin Infect Dis ; 74(8): 1419-1428, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1703304

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants concerning for enhanced transmission, evasion of immune responses, or associated with severe disease have motivated the global increase in genomic surveillance. In the current study, large-scale whole-genome sequencing was performed between November 2020 and the end of March 2021 to provide a phylodynamic analysis of circulating variants over time. In addition, we compared the viral genomic features of March 2020 and March 2021. METHODS: A total of 1600 complete SARS-CoV-2 genomes were analyzed. Genomic analysis was associated with laboratory diagnostic volumes and positivity rates, in addition to an analysis of the association of selected variants of concern/variants of interest with disease severity and outcomes. Our real-time surveillance features a cohort of specimens from patients who tested positive for SARS-CoV-2 after completion of vaccination. RESULTS: Our data showed genomic diversity over time that was not limited to the spike sequence. A significant increase in the B.1.1.7 lineage (alpha variant) in March 2021 as well as a transient circulation of regional variants that carried both the concerning S: E484K and S: P681H substitutions were noted. Lineage B.1.243 was significantly associated with intensive care unit admission and mortality. Genomes recovered from fully vaccinated individuals represented the predominant lineages circulating at specimen collection time, and people with those infections recovered with no hospitalizations. CONCLUSIONS: Our results emphasize the importance of genomic surveillance coupled with laboratory, clinical, and metadata analysis for a better understanding of the dynamics of viral spread and evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Genomics/methods , Humans , SARS-CoV-2/genetics
12.
MMWR Morb Mortal Wkly Rep ; 70(17): 627-631, 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1207941

ABSTRACT

In late January 2021, a clinical laboratory notified the Maryland Department of Health (MDH) that the SARS-CoV-2 variant of concern B.1.351 had been identified in a specimen collected from a Maryland resident with COVID-19 (1). The SARS-CoV-2 B.1.351 lineage was first identified in South Africa (2) and might be neutralized less effectively by antibodies produced after vaccination or natural infection with other strains (3-6). To limit SARS-CoV-2 chains of transmission associated with this index patient, MDH used contact tracing to identify the source of infection and any linked infections among other persons. The investigation identified two linked clusters of SARS-CoV-2 infection that included 17 patients. Three additional specimens from these clusters were sequenced; all three had the B.1.351 variant and all sequences were closely related to the sequence from the index patient's specimen. Among the 17 patients identified, none reported recent international travel or contact with international travelers. Two patients, including the index patient, had received the first of a 2-dose COVID-19 vaccination series in the 2 weeks before their likely exposure; one additional patient had a confirmed SARS-CoV-2 infection 5 months before exposure. Two patients were hospitalized with COVID-19, and one died. These first identified linked clusters of B.1.351 infections in the United States with no apparent link to international travel highlight the importance of expanding the scope and volume of genetic surveillance programs to identify variants, completing contact investigations for SARS-CoV-2 infections, and using universal prevention strategies, including vaccination, masking, and physical distancing, to control the spread of variants of concern.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , Cluster Analysis , Contact Tracing , Humans , Maryland/epidemiology , Phylogeny , SARS-CoV-2/genetics , Travel
13.
JCI Insight ; 6(6)2021 03 22.
Article in English | MEDLINE | ID: covidwho-1145394

ABSTRACT

The early COVID-19 pandemic was characterized by rapid global spread. In Maryland and Washington, DC, United States, more than 2500 cases were reported within 3 weeks of the first COVID-19 detection in March 2020. We aimed to use genomic sequencing to understand the initial spread of SARS-CoV-2 - the virus that causes COVID-19 - in the region. We analyzed 620 samples collected from the Johns Hopkins Health System during March 11-31, 2020, comprising 28.6% of the total cases in Maryland and Washington, DC. From these samples, we generated 114 complete viral genomes. Analysis of these genomes alongside a subsampling of over 1000 previously published sequences showed that the diversity in this region rivaled global SARS-CoV-2 genetic diversity at that time and that the sequences belong to all of the major globally circulating lineages, suggesting multiple introductions into the region. We also analyzed these regional SARS-CoV-2 genomes alongside detailed clinical metadata and found that clinically severe cases had viral genomes belonging to all major viral lineages. We conclude that efforts to control local spread of the virus were likely confounded by the number of introductions into the region early in the epidemic and the interconnectedness of the region as a whole.


Subject(s)
COVID-19/virology , Genome, Viral , Pandemics , Phylogeny , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Baltimore , Base Sequence , COVID-19/epidemiology , COVID-19/transmission , Child , Disease Outbreaks , Disease Transmission, Infectious , District of Columbia , Female , Genomics/methods , Global Health , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL